Home About us Past Events Meeting 2020 AI Seminars 2021 Contact Us

Serbian AI

Connecting Serbian AI Researchers / Повезивање српских истраживача АИ

Welcome to Serbian AI. A global community of Serbian AI academics and practicioners. We now have a youtube channel
Добродошли у српски АИ. Глобална заједница српских АИ академика и практичара.

About

SerbianAI is an initiative started by Prof. Predrag Janicic and Pavle Subotic after a successful mini workshop in 2019. We are a informal networking group that meets to organise workshops, meetings and promote collaboration between AI researchers in Serbian and abroad. Moreover, we would like to engage local industry to support local academics. We strongly feel the best way to reduce the brain drain is to strengthen our local scientific institutions so that our brightest minds can build their research careers in Serbia.

СербианАИ је иницијатива коју су покренули проф. Предраг Јаничић и Павле Суботић након успешне мини радионице 2019. године. Ми смо неформална група за умрежавање која се састаје ради организовања радионица, састанака и промоције сарадње између истраживача АИ у Србији и иностранству. Штавише, желели бисмо да ангажујемо локалну индустрију да подржи локалне академике. Снажно осећамо да је најбољи начин за смањење одлива мозгова јачање наших локалних научних институција како би наши најбистрији умови могли да граде своју истраживачку каријеру у Србији.

Meeting 2020

Video na YouTube kanalu

Program / Програм:


10:00 Otvaranje - Predrag Janicic i Pavle Subotic

10:10 Dijaspora -- Logika i formalne metode
(predsedava Pavle Subotic)

Alen Arslanagic, U Groningen, Holland
Stefan Jaksic, AIT Vienna, Austria
Dejan Jovanovic, SRI, USA
Marijana Lazic, TU Munich, Germany
Ranko Lazic, U Warwick, UK
Petar Maksimovic, Imperial College London, UK
Marija Selakovic i LazarStricevic, Huawei, Dresden, Germany
Petar Vukmirovic, Vrije U, Amsterdam, Holland
Djordje Zikelic, IST, Austria

10:30 Dijaspora -- Obrada prirodnog jezika
(predsedava Pavle Subotic)

Milica Gasic, U Dusselforf, Germany
Vlado Keselj, Dalhousie U, Canada
Nikola Milosevic, Bayer, Germany
Jelena Mitrovic, U Passau, Germany
Maja Popovic, Dublin City U, Ireland
Irena Spasic, U Cardiff, UK
Goran Nenadic, U Manchester, UK

10:45 Dijaspora: Masinsko ucenje
(predsedava Pavle Subotic)

Djordje Gligorijevic i Jelena Gligorijevic, Yahoo Research, Sunnyvale, USA
Vladimir Mitrovic, Amazon, USA
Andrija Tomovic, Novartis, Switzerland
Petar Velickovic, DeepMind, UK

10:55 Pauza

11:00 Akademske institucije u Srbiji
(predsedava Predrag Janicic)

ETF-Bg, Drazen Draskovic
FON-Bg, Vladan Devedzic
FLF-RGF-JERTEH-Bg, Ranka Stankovic
FTNCacak-Kg, Vladimir Mladenovic
FTN-NS, Jelena Slivka
Inf-PMF-NS, Milos Radovanovic
Mas(CAM)-Ni, Melanija Mitrovic
MI-SANU, Zoran Ognjanovic
MatF-Bg, Filip Maric
DU-NoviPazar, Ulfeta Marovac
PMF-Kg, Bodan Stojanovic
PMF-Ni, Miroslav Ciric
PMF-Pr, Stefan Panic
U Singidunum, Milos Stankovic
MDCS, Andreja Ilic
RCC, Damjan Krstajic
Mat-PMF-NS, Andreja Tepavcevic

11:30 Pauza

11:45 Panel diskusija

Slides / Слајдови


Participants / Учесници:


Logic and Formal Reasoning / Логика и формалне методе:


Petar MaksimovićImperial College London
Ranko LazicUniversity of Warwick
Marija SelakovicHuawei Research
Petar VukmirovicVrije Universiteit Amsterdam
Predrag JaničićMatF, University of Belgrade
Djordje ZikelicIST Austria
Pavle Suboticpsubotic.github.io
Vesna MarinkovicMatF, University of Belgrade
Tatjana Lutovac ETF, University of Belgrade
Zoran OgnjanovićMathematical institute SANU
Andreja TepavčevićMathematical institute SANU & PMF University of Novi Sad
Miroslav ĆirićPMF, University of Niš
Milena Vujosevic JanicicMatF, University of Belgrade
Filip MarićMatF, University of Belgrade
Vojin JovanovicOracle Labs
Marijana LazicTU Munich
Silvia GilezanFTN University Novi Sad, MISANU
Sana Stojanovic ĐurđevićMatF, University of Belgrade
Danijela SimićMatF, University of Belgrade
Stefan StanimirovićPMF, University of Niš
Simona KašterovićFTN, University of Novi Sad
Branko MaleševićUniverzitet u Beogradu - Elektrotehnički fakultet (ETF)
Tamara StefanovićFTN, University of Novi Sad
Alen Arslanagic Uni. Groningen
Lazar Stričević Huawei Dresden Research Center
Stefan Jakšić Austrian Institute of Technology
Tatjana StojanovićPMF, University of Kragujevac

NLP / Обрада природног језика:


Anđelka ZečevićMatF, University of Belgrede
Lazar DavidovićUniversity of Belgrade
Vladisav JelisavcicMathematical Institute SANU
Branko ArsićPMF, University of Kragujevac
Nikola Milosevic 
Danka JokicUniversity of Belgrade
Marko PutnikovićFON, University of Belgrade
Ranka StankovićRGF, University of Belgrade
Branislava ŠandrihFil, University of Belgrade
Jelena MitrovićUniversity of Passau
Irena SpasicCardiff University
Aleksandar KovacevicFTN, University of Novi Sad
Goran NenadicUniversity of Manchester
Maja PopovićDublin City University
Aldina AvdićState University of Novi Pazar
Adela LjajićState University of Novi Pazar
Ulfeta MarovacState University of Novi Pazar
Vlado KeseljDalhousie University, Faculty of Computer Science
Miloš StanojevićUniversity of Edinburgh

ML / Машинско учење:


Irfan FetahovicDrzavni univerzitet u Novom Pazaru
Dragana RadojicicMathematical institute SANU
Mladen NikolicMatF, University of Belgrade
Vladimir UroševićMatF, University of Belgrade
Gorana GojićFaculty of Technical Sciences, University of Novi Sad
Predrag TadićUniversity of Belgrade - School of Electrical Engineering (ETF)
Igor IlicMicrosoft
Damjan DakićMicrosoft
Andreja IlicMicrosoft
Miloš RadovanovićPMF, University of Novi Sad
Djordje GligorijevicYahoo Research
Jelena GligorijevicYahoo Research
Radovan TurovićFaculty of Technical Sciences, University of Novi Sad
Petar VeličkovićDeepMind
Milos StankovicUniversity Singidunum. Belgrade

General AI / Општа вештачка интелигенција:


Vladan DevedzicFON, University of Belgrade
Melanija MitrovićFaculty of Mechanical Engineering, Niš
Bogdan DjordjevićMathematical Institute SANU
Tatjana DavidovićMathematical Institute SANU
Vladimir MitrovicAmazon, AWS AI (Elastic Inference)
Vladimir MladenovicFTN, University of Kragujevac
Jelena SlivkaFaculty of Technical Sciences, University of Novi Sad
Tatjana Jakšić KrügerMathematical institute SANU
Velimir IlićMathematical institute SANU
Stefan PanicPMF, University of Pristina
Negovan StamenkovicPMF, University of Pristina
Dušan GajićFaculty of Technical Sciences, University of Novi Sad
Irfan FetahovićState University of Novi Pazar
Ivana Štajner-PapugaUniverzitet u Novom Sadu
Dražen DraškovićUniverzitet u Beogradu - Elektrotehnički fakultet (ETF)
Boban StojanovićPMF, University of Kragujevac
Ana Kaplarević-MališićPMF, University of Kragujevac
Miloš IvanovićPMF, University of Kragujevac
Višnja SimićPMF, University of Kragujevac
Andrija TomovicNovartis, Switzerland
Nina Radojičić MatićMatF, University of Belgrade
Branimir SeseljaPMF, University of Novi Sad
Miroslav MarićMatF, University of Belgrade
Jelena IgnjatovićPMF, University of Niš
Branislav KisačaninNvidia
Damjan KrstajicResearch Centre for Cheminformatics, Serbia

Seminars 2021

МАТЕМАТИЧКИ ИНСТИТУТ САНУ, Београд
СЕМИНАР ИЗ ВЕШТАЧКЕ ИНТЕЛИГЕНЦИЈЕ
ПРОГРАМ ЗА АПРИЛ 2021
  1. 7. април 2021. 19-20h
    др Предраг Јаничић
    редовни професор, Математички факултет, Универзитет у Београду

    Наслов: Аутоматско резоновање и примери система за резоновање у исказној логици, у логици првог реда и у геометрији

    Апстракт: У предавању ће бити дат кратак приказ области аутоматског резоновања, посебно централне подобласти – аутоматског доказивања теорема, као и неких области примена. Биће укратко приказано и неколико предавачевих системa који користе аутоматско резоновање у исказној логици, у логици првог реда и у геометрији и биће описане неке њихове конкретне примене.

  2. 14.април 2021. 19-20h
    др Павле Суботић
    Senior Research Engineer at Azure Data Labs

    Title: Debugging Large Scale Datalog with Proof Annotations

    Abstract: Logic programming languages such as Datalog have become popular as Domain Specific Languages (DSLs) for solving large-scale, real-world problems, in particular, static program analysis, graph databases and network analysis. The logic specifications that model analysis problems process millions of tuples of data and contain hundreds of highly recursive rules. As a result, they are notoriously difficult to debug. While the database community has proposed several data provenance techniques that address the Declarative Debugging Challenge for Databases, in the cases of analysis problems, these state-of-the-art techniques do not scale. In this talk, I introduce a novel bottom up Datalog evaluation strategy for debugging: Our provenance evaluation strategy relies on a new provenance lattice that includes proof annotations and a new fixed-point semantics for semi-naïve evaluation. A debugging query mechanism allows arbitrary provenance queries, constructing partial proof trees of tuples with minimal height. We integrate our technique into Soufflé, a Datalog engine that synthesizes C++ code, and achieve high performance by using specialized parallel data structures. Experiments are conducted with DOOP/DaCapo, producing proof annotations for tens of millions of output tuples. We show that our method has a runtime overhead of 1.31× on average while being more flexible than existing state-of-the-art techniques. This is joint work with David Zhao and Prof. Bernhard Scholz from the University of Sydney. A version of this talk was presented at POPL this year (2021).

  3. 21.април 2021. 19-20h
    др Бранислав Кисачанин
    Nvidia + Institut br.ai.ns

    Наслов: Рачунарске архитектуре за AI/ML: Када је која најбоља?

    Апстракт: У овом предавању ћемо се позабавити питањем са којим се суочава већина AI/ML истраживача, о томе која је рачунарска архитектура оптимална за проблем који решавају. Да ли је то GPU, CPU, FPGA, DSP, ASIC или нешто сасвим ново? Можемо ли AI да применимо на паметном телефону? Питања има много а правих одговора мало чак и на Гуглу.

  4. 28.април 2021. 19-20h
    др Петар Величковић
    Senior Research Scientist at DeepMind

    Title: Geometric Deep Learning: Grids, Graphs, Groups, Geodesics and Gauges

    Abstract: The last decade has witnessed an experimental revolution in data science and machine learning, epitomised by deep learning methods. Indeed, many high-dimensional learning tasks previously thought to be beyond reach –such as computer vision, playing Go, or protein folding – are in fact feasible with appropriate computational scale. Remarkably, the essence of deep learning is built from two simple algorithmic principles: first, the notion of representation or feature learning, whereby adapted, often hierarchical, features capture the appropriate notion of regularity for each task, and second, learning by local gradient-descent type methods, typically implemented as backpropagation. While learning generic functions in high dimensions is a cursed estimation problem, most tasks of interest are not generic, and come with essential pre-defined regularities arising from the underlying low-dimensionality and structure of the physical world. This talk is concerned with exposing these regularities through unified geometric principles that can be applied throughout a wide spectrum of applications. Such a ‘geometric unification’ endeavour in the spirit of Felix Klein's Erlangen Program serves a dual purpose: on one hand, it provides a common mathematical framework to study the most successful neural network architectures, such as CNNs, RNNs, GNNs, and Transformers. On the other hand, it gives a constructive procedure to incorporate prior physical knowledge into neural architectures and provide principled way to build future architectures yet to be invented.

Contact Us

info.serbian.ai[at]gmail.com